

HES-SO Valais-Wallis • rue de l’Industrie 23 • 1950 Sion
+41 58 606 85 23 • hei@hevs.ch • www.hevs.ch/hei

Systems Engineering

Infotronics

Bachelor’s thesis

Diploma 2022
Pompili Valérie

Performance Analysis of Nordic NRF under

Zephyr

Professor
Rieder Medard

Expert
Mangold Stefan

Submission date of the report
cf. thes is form (19.08.2022)

2 | P a g e

3 | P a g e

Resume

4 | P a g e

Abbreviations

BLE Bluetooth Low Energy

DK Development Kit

IoT Internet of Things

RTOS Real-Time Operating Systems

SDK Software Development Kit

SoC System on a Chip

TB Bachelor’s Thesis

5 | P a g e

Abstract

The YpsoMate autoinjector is an automated disposable injection device created by

Ypsomed. “Ipso” means “self” and “med” stands for medication. The aim of this

Swiss medical technology company is to allow patients to administer their own

medication in a safe and simple way. Their main sector of activity concern patients

with diabetes.

With YpsoMate they seek to create a product that is as easy to use as possible. The

use consists of two steps: Remove cap and inject. The second point of interest of

Ypsomed is to create a product that is as ecological and environmentally friendly as

possible. That is why, with Ypsomate, they have created a reusable injector. After

using the product, the user only needs to change the syringe and the drug container.

In an effort to simplify patients' lives and avoid appointments and lost hours with

medical staff, they included an electronics system capable of alerting them to the

use of the autoinjector.

After Nordic's announcement to refocus their production directly in Norway,

Ypsomed is very interested in working with their product and especially with the

nRF5x product range.

The goal of this project is to study the new software environment of Nordic that

includes Zephyr RTOS on the nRF52840 Development Kit (DK) to integrate it into

their product. At the beginning of this project, a list of the different tasks to be

carried out has been established. Each task will be entirely documented and a

collection of samples projects will be established.

This Thesis is embedded into a medical context given by Ypsomed AG.

6 | P a g e

Table of Contents
Abbreviations ... 2

1 Introduction ... 8

1.1 Aim of Study .. 8

1.1.1 Introduction to TB .. 8

1.1.2 Description of the project ... 8

1.1.3 Objectives of the project ... 8

2 Nordic SoCs.. 9

2.1 State of the Art ... 9

2.1.1 Family of nRF Series SoCs .. 9

2.1.2 nRF5 SDK vs nRF Connect SDK .. 9

2.2 Materials – nRF52840 Development Kit ... 10

2.2.2 Hardware description.. 10

2.2.3 Specification ... 11

3 Setup of the Development Environment .. 12

3.1 Structure ... 12

3.2 Tools and configuration ... 14

3.3 Installation of the environment .. 15

3.4 About Workspace .. 16

3.5 Creation of a project with Workspace ... 18

3.6 Open an existing project using west .. 21

4 About Zephyr.. 22

4.1 What is an RTOS? ... 22

4.2 Threads... 23

4.3 Create a Thread .. 23

5 Performance’s analysis of the nRF52840 Nordic device under Zephyr 24

5.1 The interest of study latency and response time 24

5.2 The Cortex-M4 .. 25

5.3 Set up and protocol .. 26

5.4 Test and Results ... 27

5.4.2 Toggle an output pin ... 27

5.4.3 Input to Output ... 29

5.4.4 Response time ... 30

6 Bluetooth communication on nRF52 under Zephyr 31

6.1 Introduction of Bluetooth Low Energy .. 31

6.1.2 GAP Role.. 32

6.1.3 Bluetooth LE Advertising... 33

7 | P a g e

6.2 Bluetooth sample ... 34

6.2.2 Overview .. 34

6.2.3 Implementation of Broadcaster .. 34

6.2.4 Implementation of Observer ... 36

7 Samples... 38

7.1 Use cases .. 38

7.2 SAADC .. 38

7.3 ADC with nfrx drivers ... 39

7.3.2 Overview .. 39

7.3.3 Implementation ... 39

7.4 ADC with Zephyr .. 41

7.4.2 Overview .. 41

7.4.3 Implementation ... 41

7.5 PWM .. 43

7.6 PWM sample.. 45

7.6.2 Overview .. 45

7.6.3 Implementation ... 45

8 Demonstration .. 46

9 Conclusion .. 47

Annexe .. 48

Annexe A: BT Specification V1... 48

Annexe B: BT Specification V2 ... 49

List of Figures... 50

List of Tables .. 51

8 | P a g e

1 Introduction

1.1 Aim of Study

1.1.1 Introduction to TB

The Bachelor’s Thesis (TB) is realised in collaboration with HES-SO Valais-Wallis

and Ypsomed AG. All the project is realised at the HES-SO in Sion.

The work is supervised by Professor Medard Rieder.

1.1.2 Description of the project

This TB intents to establish a collection of samples projects that are useful to

establish a performance profile of the nRF52xxx Bluetooth device family. All the

tasks realised are implemented under the nRF Connect environment SDK. Another

constraint is the use of the Zephyr RTOS. Zephyr is a recent open source RTOS. It

is mainly used in embedded systems due to its low power consumption, stability

and efficiency. It includes a scheduler that ensures predictable/deterministic

execution patterns and abstracts out the timing requirements. The main element of

this project will be the Bluetooth Low Energy (BLE) stack offered by Nordic. It will

be important to study the impact of BLE communication on single core SoC’s.

1.1.3 Objectives of the project

This project aims to cover the following goals:

1. Study of the nRF Family

2. Deployment of the development environment

3. Study the interrupt latency

4. Study Interrupt Priority

5. Study ADC performance

6. Study PWM Generation

All these tasks will be studied running in parallel with Bluetooth Low Energy in

order to see how to prevent several tasks from being interrupted due to Bluetooth

communication. For more details, please refer to the specifications in the annex. Be

aware that there is two version of the specifications after discussion and

modification of the points to be studied with the company.

9 | P a g e

2 Nordic SoCs

2.1 State of the Art

2.1.1 Family of nRF Series SoCs

Nordic Semiconductor is a world-leading specialist in ultra-low power wireless

connectivity. Their technology enables millions of IoT devices to connect around

the world. Everything changed in the summer of 2012 when Nordic launch its

nRF51 Series of SoC on the market. It was a revolution in the wireless world.

“For the first time, these chips uniquely separated the wireless protocol stack from

the application software and included a 32-bit Arm Cortex-M based processor and

enough embedded memory to run Bluetooth LE and proprietary 2.4GHz or ANT

wireless technologies, enabling connected IoT products from a single chip.1”

Then followed the nRF52 series in 2015. In this family, the nRF52840 and

nRF52833 are particularly popular among users. Another big improvement was

made in 2018 with the release of the nRF91 series. It included new tools as West

and nRF Connect SDK. Finally, the latest product is the nRF5340. This is the first

SoC in the world that possess a dual-core (ARM Cortex-M33).

2.1.2 nRF5 SDK vs nRF Connect SDK

In order to easily develop applications with their device, Nordic provides Software

Development Kit which contains tools, libraries and a set of samples to help the

developers. There are two of them: nRF5 SDK and nRF Connect SDK.

The nRF5 SDK is a standalone software used since 2012. The Bluetooth LE stack

used is called SoftDevice and the source code for the library is confidential. The

nRF5 SDK is a bare-metal SDK, which means that programming is based on

sequential programming and does not depend on an RTOS. However. It is possible

to use FreeRTOS to have some real-time operating system.

With the new generation of devices and due to the demand from product makers, it

was logical to adopt an RTOS natively. Project member of Zephyr since 2016,

Nordic provided the nRF Connect SDK fully RTOS-based using Zephyr RTOS.

Independent, scalable and stable, Zephyr RTOS is open source that provides

security and stability and build for low power wireless.

The nRF Connect SDK is the main SDK of Nordic. NRF5 SDK is now in

maintenance mode. Any features beyond BLE 5 will not be added to the nRF5 SDK.

Nordic requires its users and customers to use the nRF Connect SDK and Zephyr.

For more information, you can refer the following article.

1 https://www.chipestimate.com/Nordic-Semiconductor-to-ship-its-billionth-Arm-

1601622000/Nordic-Semiconductor/news/52681

https://devzone.nordicsemi.com/nordic/nordic-blog/b/blog/posts/nrf-connect-sdk-and-nrf5-sdk-statement

10 | P a g e

2.2 Materials – nRF52840 Development Kit

In agreement with the company, all samples were developed with an nRF52840.

You can find following description on Zephyr website.

2.2.2 Hardware description

For this bachelor thesis, the nRF52840 DK (PCA 10056) board was used.

Figure 1: nRF5280 DK board

This board include a 32-bit ARM Cortex-M4 CPU with FPU running at 64 MHz. It

has two external oscillators:

1. Slow clock: 32.768 kHz

2. Main Clock: 32 MHz

For connections and IOs, here are the PINs dedicated to GPIOs:

LED 1 P0.13

LED 2 P0.14

LED 3 P0.15

LED 4 P0.16

Button 1 P0.11

Button 2 P0.12

Button 3 P0.24

Button 4 P0.25

Tableau 1: Pin configuration for GPIO

https://docs.zephyrproject.org/2.7.0/boards/arm/nrf52840dk_nrf52840/doc/index.html

11 | P a g e

2.2.3 Specification

The nRF52840 SoC provide Bluetooth 5.3 supporting Bluetooth Low Energy,

Bluetooth Direction Finding, Bluetooth mesh, NFC, Thread and Zigbee. This SoC

has the following specifications:

Flash 1 MB

RAM 256 KB

CPU 64 MHz ARM Cortex M4 with FPU

Supply voltage range 1.7 to 5.5 V from battery, external or

USB

Hardware security 128-bit AES CCM

Hardware Security Arm CryptoCell 310

Oscillators 64 MHz crystal oscillator (HFXO)

controlled by a 32 MHz external

crystal.

Tableau 2: nRF52840 DK specifications

12 | P a g e

3 Setup of the Development
Environment

3.1 Structure

The nRF Connect SDK provides one code base and toolchain to develop application

for nRF91, nRF53 and nRF52 Series. This code is organized in 4 main repositories:

• Sdk-nrf Contains application & Connectivity Protocols.

• Sdk-nrfxlib Contains Peripheral Drivers and Stacks

• Sdk-Zephyr Contains RTOS & Board Configuration

• Sdk-MCUBoot Contains an open-source Bootloader.

This code is an interesting combination between software developed by Nordic and

open-source projects by Zephyr. The figure below shows the different layers

available and the combination of Nordic and Zephyr code. In blue we find the code

provided by Nordic Semiconductor and in purple the code provided by Zephyr. This

allowed a wide range of wireless technologies and applications to be supported by

one integrated code base.

Figure 2: Layers of nRF Connect SDK

13 | P a g e

Nordic synchronizes with external repositories to always have the latest version of

open source of Zephyr and MCU. You can see with the next figure the external

repositories that would include Zephyr and MCU boot. As customer or developer,

you don’t need to worry about the open-source. Nordic also runs integration tests

on all source and manages configuration.

Figure 3: How code base is synchronizes

14 | P a g e

3.2 Tools and configuration

The figure illustrates the toolchain of nRF Connect SDK and which software are

used to deliver a software product:

Figure 4: nRF Connect SDK tools and configuration methods

- Kconfig Generates definitions that configure libraries and subsystems.

- Devicetree Describe the hardware and pin layout. It is build for different PCB

design without changing source code.

- CMake Use the information to build files.

- Ninja Use file from CMake to build the program.

- GCC Create the executable (hex file).

To manage source code and configurations, there are three steps:

First we have West which is a multi-repository management tool. It is used to

manage workspace and make sure to have the good version of the 4 main repository.

The code base is generated from nRF Connect SDK and your code.

Then Kconfig sets up the feature configuration for compile.

Finally there is Device Tree which sets up the target board.

Figure 5: Manage source code and configuration

15 | P a g e

3.3 Installation of the environment

The set-up guide is available directly on the web site of NORDIC Semiconductor

on the “Getting started” section.

The nRF Connect SDK installation procedure is:

1. Install nRF Command Line Tools:

The nRF Command Line Tools is used for development,

programming and debugging of Nordic Semiconductor's nRF51,

nRF52, nRF53 and nRF91 Series devices.

2. Install nRF connect for Desktop:

3. Open nRF Connect for Desktop

3.1. Install Toolchain Manager

3.2. After the installation, click on the button “Open”

4. Install the latest nRF Connect SDK version

Figure 6: Toolchain Manager, select nRF Version

5. Install VS Code:

https://www.nordicsemi.com/Products/Development-tools/nrf-command-line-

tools/download

https://www.nordicsemi.com/Products/Development-tools/nrf-connect-

for-desktop/download

https://code.visualstudio.com/download

16 | P a g e

3.4 About Workspace

Developing applications is bound to make you work with workspace. A workspace

is a collection of one or more files. Most of the time your application is contained

in a single folder open as the workspace but you can include more folders with other

applications and then have a multi-root workspace. Having a multi-root workspace

allowed you to configure settings that apply to all folders. With VS code there is a

JSON file <name>.code-workspace that regroups the folder of the workspace.

Figure 7: Contain of .code-worspace file

With nRF we are talking about west workspace, not to be confused with workspace

from VS Code. West is a meta-tool used by Zephyr that provides a multiple

repository management system. “West will clone a separate instance of nRF

Connect SDK to its workspace and use it for the workspace application.”2 When

creating a project with west workspace, you will find the four repositories presented

with the structure chapter 12.

Figure 8: West workspace

2 https://nrfconnect.github.io/vscode-nrf-connect/connect/create_app.html

17 | P a g e

When developing an application with nRF Connect SDK, you have the option of

working with or without West workspace. When creating your first project, you

have the choice between 2 types of application: freestanding or workspace.

It is recommended to choose freestanding if you are developing a single application.

On the contrary, if you plan to work with several applications or if you wish to have

a west workspace, we advise you to choose the 2nd solution.

Figure 9: Create a new application

18 | P a g e

3.5 Creation of a project with Workspace

1. Open nRF Connect for Desktop

2. Open Toolchain Manager

3. Open VS Code with the version of nRF Connect SDK wanted

a. The fact of going through the nRF Connect application and not

directly through VS Code makes it possible to check if all the

dependencies used are installed and updated.

4. If any folder or workspace ais open, close it. File → close Workspace

5. Go to the nRF Connect extension.

6. In the “Welcome” panel, click on Create a new application.

a. Select Workspace for Application type.

b. Choose the location of your project (nearest the root).

c. Select sample to use.

d. Name your project

Figure 10: Create a new project with workspace

19 | P a g e

When creating the application, an error will occur and the project will not open.

This is due to an indentation error in one of the files. You must go to the location of

your project and find the west.yml. Make the changes as shown in the following

figures:

Figure 11: Correction to add for west.yml

7. Open Toolchain Manage

a. Click on the arrow next to the Open VS Code button of the version

of nRF Connect SDK that you are using. → Open command

prompt...

Figure 12: How to open command prompt

20 | P a g e

b. Go to the location of the project (same level as .west)

c. write the command: west update

d. close the window when finish

Figure 13: How to update West

8. Open VS Code with the version of nRF Connect SDK wanted

9. Go to the nRF Connect extension.

10. In the “Welcome” panel, click on add a new Application and search for your

project.

General comment:

• The indentation error was reported to the Nordic team through several

tickets on the Devzone. However, no solution has been provided yet.

• It is important to note that you should never open VS Code directly but

always go through the nRF Connect for Desktop application. With nRF

Connect SDK for Desktop and Toolchain Manager, you will have the west

workspace with the chosen version of nRF Connect SDK.

• Choose Freestanding for new application type only if you had to add a

project to an existing workspace.

21 | P a g e

3.6 Open an existing project using west

1. Open nRF Connect for Desktop

2. Open Toolchain Manager

a. Click on the arrow next to the Open VS Code button of the version

of nRF Connect SDK that you are using. → Open command

prompt...

b. Go to the location of the project (same level as .west)

c. write the command: west update

d. close the window when finish

3. Open VS Code with the version of nRF Connect SDK wanted

4. If any folder or workspace are open, close it.

5. Click on File → Open Workspace from File…

Figure 14: How to open workspace

6. Go to the project you want to open and select the JSON <name>.code-

workspace

7. To add any project of the select worksapce,go to the nRF Connect extension,

“Welcome” panel and click on + Add an existing application

Figure 15: How to add an existing application

22 | P a g e

4 About Zephyr
4.1 What is an RTOS?

The goal of Real-Time Operating System (RTOS) is to ensure predictable and

determinist execution pattern. Embedded system often have timing requirement and

certain task must be done in a set time.

Each RTOS has a scheduler that decide which tasks to execute at which time based

on setting priorities of different thread.

Since 2018, Nordic has include Zephyr RTOS in their new SDK. Zephyr is a recent

and open source RTOS build for low power wireless. Zephyr was chosen because

it is independent, scalable, stable and open source.

Figure 16: Zephyr Kernel3

3 https://devzone.nordicsemi.com/cfs-file/__key/telligent-evolution-components-attachments/01-

04-00-00-00-00-12-82/Introduction-to-nRF-Connect-SDK.pdf

https://devzone.nordicsemi.com/cfs-file/__key/telligent-evolution-components-attachments/01-04-00-00-00-00-12-82/Introduction-to-nRF-Connect-SDK.pdf
https://devzone.nordicsemi.com/cfs-file/__key/telligent-evolution-components-attachments/01-04-00-00-00-00-12-82/Introduction-to-nRF-Connect-SDK.pdf

23 | P a g e

4.2 Threads

A thread is a small set of instructions that can be managed independently by a

scheduler. It allowed to split the program into two or more running tasks. With

Zephyr, any number of threads can be created (limited only by available RAM).

Only one thread can be executed at each time. Therefore there are several states in

which a thread can be found:

Figure 17: State diagram of thread

https://docs.zephyrproject.org/3.1.0/kernel/services/threads/index.html

There are several factors that make a thread unready:

• A delayed start.

• Waiting for a resource already used by another thread (semaphore).

• Waiting for a timeout.

• Thread suspended or terminated.

4.3 Create a Thread

A thread has the following properties:

• A thread id that references the thread.

• A stack area with a define size that represent the region of memory used

for the thread.

• An entry point function which a maximum of 3 argument values.

• A scheduling priority to indicate if a thread is more prioritized than another

thread. This is an integer value and can be either negative or non-negative.

Lower priorities takes precedence over higher values.

• Thread options.

• A start delay that allowed to start thread later than is definition.

• An execution mode.

There is two possibility of create a thread: Either use the define

K_THREAD_DEFINE() , or use the function k_thread_create(). Refer to

documentation of Zephyr for more information.

https://docs.zephyrprojehttps/docs.zephyrproject.org/3.1.0/kernel/services/threads/index.html#c.k_thread_createct.org/3.1.0/kernel/services/threads/index.html

24 | P a g e

5 Performance’s analysis of the
nRF52840 Nordic device under
Zephyr

5.1 The interest of study latency and response
time

It is relevant to notice the importance of timing when we are working with a real-

time system. In a medical context it is more important to develop efficient and

accurate applications. Indeed, an application with medical purposes must be

accurate and transmit information concerning the patient's health as quickly as

possible without affecting the rest of the application. Any disruption in the time

scale can have serious consequences.

What is meant by interrupt latency? The amount of time that elapses between a

device interrupt request and the first instruction of the corresponding ISR. It is

important to determine the different possible cases that could lead to a modification

of this latency and select which cases are the most interesting.

Another important time is the response time. This is the time that is the most

interesting when we are developing application and usually the main factor that

interest factory. Indeed the time consecrated to save/select/load context must be

taken in count especially when we are working with a RTOS application with a

scheduler working in the background.

Figure 18: Study of time reaction

25 | P a g e

5.2 The Cortex-M4

The nRF52840 board has a Cortex-M4 high performance 32-bit processor running

at 64MHz. His ultra-low power consumption and his optional deep sleep mode as

well as his 3-stage pipeline Harvard architecture makes it ideal for embedded

application.

“The Cortex-M4 processor closely integrates a configurable Nested Vectored

Interrupt Controller (NVIC), to deliver industry-leading interrupt performance. The

NVIC includes a Non-Maskable Interrupt (NMI) that can provide up to 256 interrupt

priority levels. The tight integration of the processor core and NVIC provides fast

execution of Interrupt Service Routines (ISRs), dramatically reducing the interrupt

latency.”4

When we talk about interrupt latency, we like to know how many cycles it takes to

handle an interrupt. The ARM community provide the following table5 :

Figure 19: Interrupt latency of Cortex-M processors

If we count an additional 17 cycles with FPU activated, we can calculate the

approximate the interrupt latency :

𝐼𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 =
1

64𝑀ℎ𝑧
∙ (12 + 17) = 453𝑛𝑠

This value is ideal and does not represent the absolute reality. The interrupt latency

depends on what the CPU is doing when an interrupt occurs.

4 https://developer.arm.com/documentation/dui0553/b/?lang=en

5 https://community.arm.com/arm-community-blogs/b/architectures-and-processors-

blog/posts/beginner-guide-on-interrupt-latency-and-interrupt-latency-of-the-arm-cortex-m-

processors

26 | P a g e

5.3 Set up and protocol

A simple way to measure interrupt latency is to use a button to create an interrupt

and toggle a pin.

A list of the most interesting test has been establishing at the beginning of the

project. Here's what it's made of:

• Measure output pin on/ output pin off latency:

o Can be done by toggling an output pin

• Measure the latency from “signal on input pin” to “signal in ISR”

• Measure the latency from “signal on input pin” to “signal in output”

• Measure latency “signal on input pin” to “signal on output pin” with BT

transfer in between in advertise mode.

• Measure latency “signal on input pin” to “signal on output pin” with BT

transfer in between in connected mode.

In order to measure the different latencies, an oscilloscope was used to visualise the

results. The oscilloscope used was an Analog discovery 2. In addition to measuring

signals, it is possible to generate them. This is a particularly useful feature for testing

the ADC (see chapter 7.2).

Figure 20: Test environment

27 | P a g e

5.4 Test and Results

5.4.2 Toggle an output pin

There are several methods for changing the value of a PIN. For this first test, the

goal is to measure the time the processor takes to change the value of a pin. It’s

interesting to establish a list of all method allowing to modify output. We can set

the value of a pin or directly change the value of port with mask.

Figure 21: List of all method test to toggle an output pin

I use the mode Logic with Waveform to visualize my pin. I connected D0 to my

LED1:

Figure 22: Measure process time

28 | P a g e

We can see in the below the different measure corresponding to each method. All

measure were realised 3 times and the final value is the average of them:

Figure 23: Results of test 1 for interrupt latency with nRF52840

We can that there is not a notable difference between the various method to toggle

a pin. If we go through the library GPIO given by Zephyr, we can notice that several

method calling each other like gpio_pin_set() call gpio_pin_set_raw()

which call gpio_port_clear_bits/gpio_port_set_bits_raw(). It can

explain why some methods are a little bit faster than another.

Comment
At the beginning of the TB, the measurements were made on the nRF5340 before

the company expressed its willingness to work with the nRF52840. I then measured

values of 370ns by toggling a pin. Knowing that the nRF5340 has a clock 2 to 4

times faster than the nRF52840, the measurements are consistent. In the end we can

see that the set_raw() function is the “fastest”.

29 | P a g e

5.4.3 Input to Output

Another interesting value to measure is the response time. It is an important factor

when developing a new product. It is not possible to directly measure it with an

oscilloscope. We must at first measure the total time between an interruption and a

toggled LED.

For the second test, an interrupt is generated with a button and turn on a led. The.

The code used for the measurement consists of the following steps:

1. Configure output and input pin

2. Add a callback depending on the button pressed

3. Write the interrupt routine. Here only the function

gpio_pin_toggle() was called.

Figure 24: Code to measure response time

This time, I connected D0 to the led and D1 to the button on the Analog discovery.

Here are the time I measured :

 nRF52840 : ~21,5us

Figure 25: Toggle a pin after creating external interrupt

30 | P a g e

5.4.4 Response time

Now that we have realised some measure and get value, we can compete the Figure

18. The CPU interrupt latency time has been calculating with an equation the

previous equation :

𝐼𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 =
1

64𝑀ℎ𝑧
∙ (12 + 17) = 453𝑛𝑠

The time to set an IO pin was measure with the first test:

~500𝑛𝑠

Finally, the total time between an interrupt and a led set is:

~21.5𝜇𝑠

We can then calculate the response time with the following equation:

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑖𝑚𝑒 = 𝑇𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐼𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡 𝑎𝑛𝑑 𝑠𝑒𝑡 − 𝑇𝑖𝑚𝑒𝑡𝑜 𝑠𝑒𝑡 𝐼𝑂 𝑝𝑖𝑛

21𝜇𝑠 = 21.5𝜇𝑠 − 500𝑛𝑠

Figure 26: Measure value for response time and interrupt latency

31 | P a g e

6 Bluetooth communication on
nRF52 under Zephyr

Nordic Semiconductor is a semiconductor company specialize in wireless

communication technology that power IoT. Their Bluetooth Low Energy solution

pioneered ultra-low power wireless and made them global market leader. Therefore,

the Bluetooth Communication is a main part of this study. The goal is not to give a

full description of how BLE function, but it is important to have a small introduction

of Bluetooth.

6.1 Introduction of Bluetooth Low Energy

When developing Bluetooth application, this is important to define which type of

communication we want, what information will be exchanged and if we must secure

the communication.

Figure 27: BLE Stack Protocol

The GAP (Generic Access Profile) define the discovery, connection and link. It

makes device visible to the outside world.

After a connection, GATT (Generic Attribute Profile) service and characteristic can

be used to exchange more data. GATT define the way that two BLE device transfer

data back through service and characteristic.

ATT (attribute protocol) protocol describe service and characteristic.

SM (Security Manager) takes care of the security of data exchanges between two

devices.

The L2CAP (Logical Link Control and Adaptation Layer Protocol) transfers data

between the upper layers of the host and the lower layer protocol stack.

32 | P a g e

6.1.2 GAP Role

Bluetooth allows two devices to exchange information through wireless

communication. Each device using Bluetooth Low Energy can be used in four

different roles described in the following figure:

GAP role Link Layer State
Broadcaster Advertising

Observer Scanning

Peripheral Advertising + connection (slave)

Central Scanning + initiating connection

(master)
Tableau 3: Different role of BLE available

We can resume these roles in two specific case:

• One-way communication with a device that only advertises packets. This is

called a broadcaster. A device in central or observer mode can then receive

and read the information contained in the packet.

• A bi-directional communication. This is called connectivity between two

devices. A device in peripheral mode will advertise to announce its

presence. A second device in central mode will then request a connection.

Thanks to Bluetooth 5.3 it is possible that a device has the role of central and

peripheral. For the purpose of this project, we will only be interested in the advertise

mode without connection.

33 | P a g e

6.1.3 Bluetooth LE Advertising

When we talk about communication, we also talk about the frequency spectrum

used. Here is the frequency spectrum used by Bluetooth Low Energy:

Figure 28: Frequency Spectrum of BLE (legacy mode)

The basic Bluetooth mode uses only three channels: 37-38-39. It is called the legacy

mode. A new feature of Bluetooth 5.0 is the advertising extension. It allows more

information to be transmitted in a packet and uses all channels in the spectrum. Each

packet sent contains an indication of the next channel used.

There are several types of advertisement. An advertisement packet can be

connectable or not connectable, scannable or not scannable. Scannable allows

devices to advertise more data than can fit into one advertising packet.

Figure 29: Advertise type method

34 | P a g e

6.2 Bluetooth sample
6.2.2 Overview

The broadcaster and observer sample demonstrates how to use Bluetooth

communication without connection. You can program the sample of broadcaster to

a nrf52840 and the sample of observer to another nrf52840. If you don’t have two

board, you can easily use the application of nRF Connect on your smartphone to

visualize advertise packet and create your own advertise packet. It is important to

note that all the sample were written in C with C object-oriented pattern.

6.2.3 Implementation of Broadcaster

It is quite simple to realise a broadcaster. There are 3 elements that need to be

defined to make a broadcaster:

1. Data to sent

2. Size of the data

3. Type of advertisement with its configuration

The first step is to enable Bluetooth with the function bt_enable() . This

function must be called before any calls that require communication with the local

Bluetooth Hardware. Then a broadcaster “object” is created. The users can even

pass the data and size of data as argument or called the function

Broad_set_data(). Finally, the advertise is start with the function

Board_start_adv().

The function Board_start_adv() contains the function bt_le_adv_start().

This function needs 5 parameters:

1. Advertising parameters

2. The data to send

3. Size of data

4. Data to use in scan response

5. Size of data

As we do not use scannable advertise packet, we don’t need the two last parameters.

First we have the advertising parameters:

Figure 30: advertising parameter

35 | P a g e

How data are organized in the advertise packet. The most interesting part of the

advertise is the PDU (Protocol Data Unit) field. That is the field that includes “user-

data” that your application is interested in sending on.6

Figure 31: Architecture of advertise packet

• PDU Type Type of advertisement (here NON-CONNECTABLE)

• RFU Reserved for future use

• CHSel 1 if LE Channel selection Algorithm #2 is supported

• TxAdd 0 if address is public, 1 if random

• RxADD 0 if target’s address is public, 1 if random

• Length Payload length

In the payload section, you will find the data you want to send. There is different

type of data represented by data type. In this sample we used two types of data:
1. BT_DATA_MANUFACTURER_DATA (0xFF)

2. BT_DATA_NAME_COMPLETE (0x09)

In the payload field, you always have the type of data first, then the size of data and

finally the data.

In this sample, you found your personal data under the manufacturer data. It is

important to note that the first two bytes always represent the Bluetooth ID of your

company given by the SIG. Here 0x025A is the id of the HES-SO Valais Wallis.

We used “Ypsomed” as the name of the device.

Figure 32: Construction of the advertise packet

6 https://novelbits.io/bluetooth-low-energy-advertisements-part-1/

36 | P a g e

6.2.4 Implementation of Observer

The sample of the observer requires more work. If starting the scan is pretty simple

then you have to sort out all the advertise packets to keep only the ones you are

interested in.

As the broadcaster sample, the first thing to do is to enable the Bluetooth. The

second step is to initialize the scan. You must call the function bt_scan_init()

and give a struct bt_scan_init_param. This struct have 3 parameters:

1. const struct bt_le_scan_param
2. bool connect_if_match
3. const struct bt_le_conn_param

The last two parameters are set to false and null because we are in non-connectable

mode. The bt_le_scan_param is initialized in the following way:

Figure 33: Scan parameter

The scan type indicates if we want to send request to acquire more data from the

broadcaster. As we are in non-scannable mode, we set this param at passive. You

can also choose the interval and scan windows.

7
Figure 34: Scan window, scan interval, advertise interval

7 https://devzone.nordicsemi.com/guides/short-range-guides/b/bluetooth-low-energy/posts/ble-

central-tutorial

37 | P a g e

The third step, to realise observer, is to add callback. We need to define a cb_data

structure to store callback functions pointers. There is 4 functions we can pass:

1. filter match

2. filter no match

3. connecting

4. connecting error

The last two functions are set NULL as we are in non-connectable mode. It is

possible to set filters to filter the advertise packet. Unfortunately, this feature does

not seem to work with nRF Connect SDK. A ticket has been opened in the devzone

but no answer has been given.

The last step is to start the scanning with the bt_scan_start function().

Even if the filters don't seem to work, it was necessary to find a solution to filter

advertise packet and get data from it. A function to parse has been realise. The goal

of this function is to go through payload, check if it contains the type of data wanted

and give back data and the size of data.

Figure 35: Method to parse data from advertise packet

The first argument is a pointer to the payload and the second one is a pointer on an

homemade struct data_p, that contain the id type of data to search through the

payload. If

A match is found, the data and the size of data is stock in the data_p struct.

For this sample, first we filter the advertise packet with the device name (0x025A).

Then we get data by searching manufacturer data.

38 | P a g e

7 Samples

7.1 Use cases

7.2 SAADC

In electronics, an analog-to-digital converter (ADC) is a system that converts an

analog signal, such as a sound picked up by a microphone or light entering a digital

camera, into a digital signal8. An ADC converts a continuous-time and continuous-

amplitude analog signal to a discrete-time and discrete-amplitude digital signal

(sampling the input).

Figure 36:Scheme of ADC

With the nRF52840 we talk about SAAD (Successive approximation analog-to-

digital converter).

There is up to 8 input channels that can be used for SAADC with the nRF52840:

Analog Input Channel GPIO Pin Number

AIN0 P0.02

AIN1 P0.03

AIN2 P0.04

AIN3 P0.05

AIN4 P0.28

AIN5 P0.39

AIN6 P0.30

AIN7 P0.31
Tableau 4: Analog pin of the nRF52840 DK

In the description of the board, it is noted that we can have a 12-bit resolution but

in reality, we are closer to a 10-bit resolution.

8 Analog-to-Digital Converter - Embedded Artistry. https://embeddedartistry.com/fieldmanual-

terms/analog-to-digital-converter/

39 | P a g e

7.3 ADC with nfrx drivers

7.3.2 Overview

The first sample of ADC has been realised with the nrfx drivers. Unlike Zephyr

which has an extra layer of abstraction, we are closer to the hardware. This sample

shows the use of callback after a sampling.

7.3.3 Implementation

To use the ADC with nrfx drivers, the first thing to do is adding the following

configuration in the prj.conf :

𝐶𝑂𝑁𝐹𝐼𝐺_𝑁𝑅𝐹𝑋_𝑆𝐴𝐴𝐷𝐶 = 𝑦

You can then start to code.

The sample using callback, we must therefore define interruption for any ADC

event. To do this, call the IRQ_CONNECT method with the address of the interrupt

routine given as an argument: nrfx_saadc_irq_handler. Only after that, we

can initialize the saadc driver.

We can then create our ADC “object”. This struct is composed of three elements:

1. Array of struct nrfx_saad_channel_t. This contains configuration of

each 8 channels planned for ADC.

2. Array of bool. Indicate which of the 8 channels are used for ADC.

3. Array of NRF enum name for the analog channel

(NRF_SAADC_INPUT_AINx).

Then we call the Saadc_init method to set all activeChannel[i] values to false and

fill the channelPin[i] array with the different enum of NRF.

40 | P a g e

For each channel use, you must configure the respective channel with the

activeChannel method.

Figure 37: Set configuration for saadc channel

In this sample, all the configuration are the same for all the saadc channel.

• SAADC_GAIN = Gain equal to 1

• SAADC_REFERENCE = internal reference

• SAADC_ACQU_TIME = 10us

• Mode = 0 (set to 1 for differential mode)

• Resistor_n = Internal resistor set at 0 by default

• Resistor_p = Internal resistor set at 0 by default

• Pin_p = NRF_SAAD_INPUT_AINx

After setting the configuration for all the channel used, we can call

Saadc_config_channel that call the function nrfx_saadc_channel_config().

Finally we can call the Saadc_start() to set the last advance configuration and

start to sample.

In Saadc_start(), we set the last configuration with nrfx_saadc_adv_config_t.

The timer for sampling can be set. The internal_timer_cc parameter of this

struct takes care of this. It is required to have a sampling period between 80 and

2047. To calculate this period, you just have to do the following operation:

16𝑀𝐻𝑧(𝐴𝐷𝐶𝑐𝑙𝑜𝑐𝑘)

𝐹𝑟𝑒𝑞𝑒𝑛𝑐𝑦 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒

After set nrfx_saadc_config_t, we can call the method

nrfx_saadc_advanced_mode_set(). This method allow to precise the

resolution, give the advance setting and the handler event for ADC. Before start

measuring, we must configure the buffers that stock the sampling values. We

configure two buffers to ensure double buffering of samples to avoid data loss

when the sampling frequency is high. Finally, we call function for triggering the

conversion in the configured mode.

Each time a saadc event occurred, the event_handler() is called. Each case is

then processed to find out if the event was generated to warn of the end of sampling

or if a buffer is full.

41 | P a g e

7.4 ADC with Zephyr
7.4.2 Overview

This second example of ADC has been realised with Zephyr library. In fact, Zephyr

also uses the nrfx library but brings an additional layer of abstraction. Unlike the

previous example, this one does not use a callback. But with this example, we use

all the analog pins

7.4.3 Implementation

Because this example uses ADC with Zephyr library, the first thing to do is adding

the following configuration in the prj.conf :

𝐶𝑂𝑁𝐹𝐼𝐺_𝐴𝐷𝐶 = 𝑦

As zephyr has a higher abstraction layer than the previous example, there is no need

to call a method to initialize the ADC.

The first step is to create an ADC “object”. This is a struct with the following

parameters:

• const struct device* : A pointer to the device structure for the driver

instance.

• struct adc_channel_cfg: A structure for specifying the configuration

of an ADC Chanel. It contain 7 parameters:

o Gain of ADC

o Reference of ADC

o Acquisition time

o Id for the channel (you can set any ID)

o mode of ADC (0 by default, 1 for differential)

o input positive channel

o input negative channel (only use for differential mode)

• bool isInitialized[MAXCHANNEL] : to indicate if a channel has been

initialized.

• uint8_t activeChannels[MAXCHANNEL] : enum of ADC channel

(NRF_SAADC_INPUT_AINx).

• int16_t buffer[MAXCHANNEL] : buffer to contain the sampling value.

When the constructor is called, all value are “reset” and the array of buffer is filled

with 0 values.

The second step is to initialize the hardware with Zadc_initHW(). It will set the

configuration and get the device. We kept the same configuration as the last sample:

Figure 38: ADC configuration (Zephyr version)

42 | P a g e

To use any channel for ADC, you must then call Zadc_activateChannel(). It

will set the activeChannels[n°channel] = 1 to indicate this channel must be

configured for ADC. The adc_channel_setup() method will then be called

through Zadc_initChannels() and the channel will finally be configured and

ready for use.

Unlike the previous example, we do not use a callback or timer to do periodic

sampling. An infinite loop called each 500ms the Zadc_readChannel() to start

a sampling. The adc_read() method is used to read the value from the channel

and takes as a parameter an adc_sequence struct which contains information

about the resolution of the ADC, the buffer where the value should be stored and its

size.

43 | P a g e

7.5 PWM

A Pulse Width Modulation (PWM) is a modulation process for encoding the

amplitude of a signal into a pulse width. PWM generate a pulse width modulated

signals on GPIO and it allow to control the power supplied to various electrical

device. It is particularly interesting to control AC/DC motors with it. A possible

feature for the autoinjector of Ypsomed is to include a motor to control the injection

of the syringe.

Figure 39: Representation of PWM9

The nRF52840 dk provide four PWM channels with individual polarity that can

drive assigned GPIOs. The 4 channels used can be visualised on the following

figure of the PWM module:

Figure 40: PWM Module10

9 https://jimmywongiot.com/2021/06/01/advanced-pulse-width-modulation-pwm-on-nordic-nrf52-

series/
10 https://infocenter.nordicsemi.com/index.jsp?topic=%2Fps_nrf52840%2Fpwm.html

44 | P a g e

The maximum of PWM base clock frequency is 16MHz. This gives the following

frequency range:

Figure 41: PWM frequency

A another interesting feature provide by the PWM module is the use of EasyDMA.

A Direct memory access (DMA) allows certain hardware subsystems to access main

system memory independently of the central processing unit (CPU). With the DMA,

the nRF52840 can support a complex sequence waveform which plays from the

Data RAM. We can have then autonomous and glitch-free update of duty cycle

values directly from memory. For more details, see the documentation provided by

Nordic Semiconductor.

https://infocenter.nordicsemi.com/index.jsp?topic=%2Fps_nrf52840%2Fpwm.html

45 | P a g e

7.6 PWM sample

7.6.2 Overview

As for the ADC use case, it is possible to use PWM with the nrfx drivers or with

Zephyr library. Only the sample with Zephyr has been realise and this is the only

example that does not apply the pattern C Oriented Object.

7.6.3 Implementation

To use Zephyr library, you must add the following configuration in the prj.conf :

𝐶𝑂𝑁𝐹𝐼𝐺_𝑃𝑊𝑀 = 𝑦

The implementation of PWM is done in 3 steps:

For the first step, we must verify that the PWM device instance is ready for use.

The function device_is_ready() is called with a pointer to the device in

question as parameter. The access to the pointer of the device wanted is made with

the struct pwm_dt_spec.

The second step is reserved for the calibration. In this step, the calibration is used

to find the maximum value for the PWM period. To do this, we start with a base

period and divide this value by 2 as much as possible. When this is no longer

possible, the last value tested will be used as the maximum value.

Figure 42: Calibration of maximal value for PWM

The final step is dedicated to the initialisation of the PWM parameters. The function

pwm_set_dt() is used with the following parameters:

• Spec PWM specification from device tree

• period Period (in nanoseconds)

• pulse Pulse width (in nanoseconds)

46 | P a g e

8 Demonstration

The different samples have been grouped together to provide a final example

applying the features covered in this TB. As Ypsomed provided a medial context,

this last example is inspired by their product, “Ypsomate”, and show a possible

application in the future.

As mentioned in the Abstract chapter, Ypsomed develops solutions for people with

diabetes. Let's take their Insulin pen and add our application.

When a patient has to inject himself with his insulin pen, the first step is to remove

the cap of the pen. This is the trigger. It is therefore logical to represent this step by

an interrupt that would be generated by a button. Our system, previously in sleep

mode, would initiate the usage cycle.

After removing the plug, it is time for the injection. A PWM could control a motor

that would push the right amount of Insulin.

After finishing the drug injection operation, we want to warn that the syringe has

been used. This step is represented by Bluetooth communication. We use the ADC

sample to send the values of an external signal via a notification packet.

Finally, a single button press puts the system back into sleep mode until a new cycle

begins.

Figure 43: Sequence diagram of demonstration

47 | P a g e

9 Conclusion

Working with a recent Software Development Kit brings its own set of difficulties.

Indeed, the transitions between new versions of the nRF Connect SDK on a Zephyr

RTOS basis complicate the use of the programming environment. It is interesting

to note the number of tickets still open with Nordic and Zephyr on the Devzone.

Thanks to a significant investment in time and perseverance, the different

problematic meet while developing have been managed and the company Ypsomed

has a stable basis and set of samples for further development.

The state of the art has allowed to understand the evolution of the devices offered

by Nordic and the difference between the two SDK provided. My tutorial delivered

allow any users to install the developing environment as well as understand the

creation of project using west tool to manage repository and nRF Connect version.

The different measurements carried out with the analog discovery allowed to

determine the response time of the nRF52840 under Zephyr RTOS, 21us. Due to

lack of time, the sending advertise packet time with Bluetooth between two devices

is missing.

Each example provided was built using an object-oriented C pattern. A total of 5

examples were developed so that the company Ypsomed could have a

demonstration and implementation of several features that are useful in the

development of future products or applications: Broadcaster, Observer, ADC with

nrfx, ADC with Zephyr and PWM with Zephyr.

Developing with new technologies is often time consuming. Sometimes you

encounter new problems that you have never seen before or you have less

documentation than for other environments tools. One example encountered during

the implementation of the observer sample concerns the method of filtering all

devices that are advertising. I could provide my own solution to resolve this

problem.

To conclude, working with a nRF device under Zephyr has real prospects for the

future. In addition to working with low power devices using RTOS, the software

will continue to be improved and more features to be added. A next step would be

to test advertising extended mode to see any improvements in Bluetooth Low

Energy communication.

Signature

Valérie Pompili

Savièse, 19.08.2022

48 | P a g e

Annexe
Annexe A: BT Specification V1

49 | P a g e

Annexe B: BT Specification V2

50 | P a g e

List of Figures

Figure 1: nRF5280 DK board ... 10
Figure 2: Layers of nRF Connect SDK .. 12

Figure 3: How code base is synchronizes... 13
Figure 4: nRF Connect SDK tools and configuration methods 14
Figure 5: Manage source code and configuration .. 14
Figure 6: Toolchain Manager, select nRF Version .. 15
Figure 7: Contain of .code-worspace file ... 16

Figure 8: West workspace .. 16
Figure 9: Create a new application ... 17
Figure 10: Create a new project with workspace ... 18

Figure 11: Correction to add for west.yml ... 19
Figure 12: How to open command prompt... 19
Figure 13: How to update West .. 20
Figure 14: How to open workspace .. 21

Figure 15: How to add an existing application ... 21
Figure 16: Zephyr Kernel ... 22

Figure 17: State diagram of thread ... 23
Figure 18: Study of time reaction ... 24

Figure 19: Interrupt latency of Cortex-M processors ... 25
Figure 20: Test environment .. 26
Figure 21: List of all method test to toggle an output pin 27

Figure 22: Measure process time .. 27
Figure 23: Results of test 1 for interrupt latency with nRF52840 28

Figure 24: Code to measure response time ... 29

Figure 25: Toggle a pin after creating external interrupt 29

Figure 26: Measure value for response time and interrupt latency 30
Figure 27: BLE Stack Protocol... 31

Figure 28: Frequency Spectrum of BLE (legacy mode) .. 33
Figure 29: Advertise type method .. 33
Figure 30: advertising parameter .. 34

Figure 31: Architecture of advertise packet ... 35
Figure 32: Construction of the advertise packet ... 35

Figure 33: Scan parameter .. 36
Figure 34: Scan window, scan interval, advertise interval 36
Figure 35: Method to parse data from advertise packet ... 37

Figure 36:Scheme of ADC ... 38
Figure 37: Set configuration for saadc channel .. 40

Figure 38: ADC configuration (Zephyr version).. 41
Figure 39: Representation of PWM .. 43

Figure 40: PWM Module.. 43
Figure 41: PWM frequency .. 44
Figure 42: Calibration of maximal value for PWM ... 45
Figure 43: Sequence diagram of demonstration ... 46

51 | P a g e

List of Tables

Tableau 1: Pin configuration for GPIO .. 10
Tableau 2: nRF52840 DK specifications ... 11
Tableau 3: Different role of BLE available .. 32
Tableau 4: Analog pin of the nRF52840 DK ... 38

